Esta formación en vivo dirigida por un instructor en Costa Rica (en línea o presencial) está destinada a desarrolladores, arquitectos e instructores de productos intermedios y avanzados que desean identificar y mitigar los riesgos asociados con las aplicaciones impulsadas por LLM, incluyendo inyección de prompts, filtración de datos y salida no filtrada, mientras incorporan controles de seguridad como validación de entrada, supervisión humana en el ciclo (human-in-the-loop) y barreras de salida.
Al finalizar esta formación, los participantes podrán:
- Comprender las vulnerabilidades principales de sistemas basados en LLM.
- Aplicar principios de diseño seguro a la arquitectura de aplicaciones LLM.
- Usar herramientas como Guardrails AI y LangChain para validación, filtrado y seguridad.
- Integrar técnicas como sandboxing, red teaming y revisión humana en el ciclo (human-in-the-loop) en pipelines de producción.
Descripción general de la arquitectura LLM y superficie de ataque
- Cómo se construyen, implementan y acceden a los LLM mediante APIs
- Componentes clave en pilas de aplicaciones LLM (por ejemplo, prompts, agentes, memoria, APIs)
- Dónde y cómo surgen problemas de seguridad en el uso real
Inyección de Prompts y Ataques de Escape
- Qué es la inyección de prompts y por qué es peligrosa
- Casos directos e indirectos de inyección de prompts
- Técnicas de escape para eludir filtros de seguridad
- Estrategias de detección y mitigación
Filtración de Datos y Riesgos a la Privacidad
- Exposición accidental de datos a través de respuestas
- Vulnerabilidades de PII y uso indebido de memoria del modelo
- Diseño de prompts conscientes de la privacidad y generación aumentada por recuperación (RAG)
Filtrado y Protección de Salida LLM
- Uso de Guardrails AI para filtrado y validación de contenido
- Definición de esquemas y restricciones de salida
- Monitoreo y registro de salidas inseguras
Supervisión Humana en el Ciclo (Human-in-the-Loop) y Enfoques de Flujo de Trabajo
- Dónde y cuándo introducir supervisión humana
- Colas de aprobación, umbrales de puntuación, manejo de respaldos
- Calibración de confianza y papel de la explicabilidad
Aplicaciones LLM Seguras Design Patterns
- Mínimos privilegios y sandboxing para llamadas a API y agentes
- Límites de velocidad, trottling y detección de abuso
- Cadenas robustas con LangChain y aislamiento de prompts
Compliance, Registro e Governance
- Asegurar la auditoría de las salidas LLM
- Mantener trazabilidad y control de versiones del prompt
- Alinear con políticas internas de seguridad y necesidades regulatorias
Resumen y Próximos Pasos
La seguridad de aplicaciones LLM es la disciplina de diseñar, construir y mantener sistemas seguros, confiables y acordes a las políticas utilizando modelos de lenguaje grandes.
Esta formación en vivo dirigida por un instructor (en línea o presencial) está destinada a desarrolladores, arquitectos e instructores de productos intermedios y avanzados que desean identificar y mitigar los riesgos asociados con las aplicaciones impulsadas por LLM, incluyendo inyección de prompts, filtración de datos y salida no filtrada, mientras incorporan controles de seguridad como validación de entrada, supervisión humana en el ciclo (human-in-the-loop) y barreras de salida.
Al finalizar esta formación, los participantes podrán:
- Comprender las vulnerabilidades principales de sistemas basados en LLM.
- Aplicar principios de diseño seguro a la arquitectura de aplicaciones LLM.
- Usar herramientas como Guardrails AI y LangChain para validación, filtrado y seguridad.
- Integrar técnicas como sandboxing, red teaming y revisión humana en el ciclo (human-in-the-loop) en pipelines de producción.
Formato del Curso
- Conferencia interactiva y discusión.
- Muchos ejercicios y práctica.
- Implementación práctica en un entorno de laboratorio en vivo.
Opciones de Personalización del Curso
- Para solicitar una formación personalizada para este curso, por favor contáctenos para organizarlo.
Requisitos Previos
- Entendimiento de modelos de lenguaje grandes y interfaces basadas en prompts
- Experiencia construyendo aplicaciones LLM usando Python
- Familiaridad con integraciones API y despliegues basados en la nube
Audiencia
- Desarrolladores de IA
- Arquitectos de aplicaciones y soluciones
- Gestores técnicos de productos que trabajan con herramientas LLM
Leer más...