
Los cursos locales dirigidos por instructor en vivo de capacitación en Inteligencia Artificial (IA) demuestran, a través de prácticas manuales, cómo implementar soluciones de inteligencia artificial para resolver problemas del mundo real. La capacitación en IA está disponible en dos modalidades: "presencial en vivo" y "remota en vivo"; la primera se puede llevar a cabo localmente en las instalaciones del cliente en Costa Rica o en los centros de capacitación corporativa de NobleProg en Costa Rica, la segunda se lleva a cabo a través de un escritorio remoto interactivo.
NobleProg -- Su Proveedor Local de Capacitación
Testimonios
Él fue muy informativo y útil.
Pratheep Ravy
Curso: Predictive Modelling with R
Machine Translated
Fue muy interactivo y más relajado e informal de lo esperado. Cubrimos muchos temas en el tiempo y el capacitador siempre estuvo receptivo a hablar más en detalle o, más en general, sobre los temas y cómo se relacionaban. Siento que la capacitación me ha dado las herramientas para seguir aprendiendo en lugar de que sea una sola sesión donde el aprendizaje se detiene una vez que has terminado, lo cual es muy importante dada la escala y la complejidad del tema.
Jonathan Blease
Curso: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
Ann creó un excelente entorno para hacer preguntas y aprender. Nos divertimos mucho y también aprendimos mucho al mismo tiempo.
Gudrun Bickelq
Curso: Introduction to the use of neural networks
Machine Translated
La parte interactiva, adaptada a nuestras necesidades específicas.
Thomas Stocker
Curso: Introduction to the use of neural networks
Machine Translated
Me gustaron los ejercicios.
Office for National Statistics
Curso: Natural Language Processing with Python
Machine Translated
Realmente disfruté el enfoque práctico.
Kevin De Cuyper
Curso: Computer Vision with OpenCV
Machine Translated
rango de material
Maciej Jonczyk
Curso: From Data to Decision with Big Data and Predictive Analytics
Machine Translated
sistematizar el conocimiento en el campo de ML
Orange Polska
Curso: From Data to Decision with Big Data and Predictive Analytics
Machine Translated
El capacitador estaba tan bien informado e incluyó áreas en las que estaba interesado.
Mohamed Salama
Curso: Data Mining & Machine Learning with R
Machine Translated
El tema es muy interesante.
Wojciech Baranowski
Curso: Introduction to Deep Learning
Machine Translated
Los formadores teóricos del conocimiento y la voluntad de resolver los problemas con los participantes después de la capacitación.
Grzegorz Mianowski
Curso: Introduction to Deep Learning
Machine Translated
Tema. ¡Muy interesante!.
Piotr
Curso: Introduction to Deep Learning
Machine Translated
Los ejercicios después de cada tema fueron realmente útiles, a pesar de que al final eran demasiado complicados. ¡En general, el material presentado fue muy interesante y envolvente! Los ejercicios con reconocimiento de imágenes fueron geniales.
Dolby Poland Sp. z o.o.
Curso: Introduction to Deep Learning
Machine Translated
Creo que si el entrenamiento se hiciera en polaco, le permitiría al formador compartir su conocimiento de manera más eficiente.
Radek
Curso: Introduction to Deep Learning
Machine Translated
La visión global del aprendizaje profundo.
Bruno Charbonnier
Curso: Advanced Deep Learning
Machine Translated
Los ejercicios son suficientemente prácticos y no necesitan un alto conocimiento en Python para hacerse.
Alexandre GIRARD
Curso: Advanced Deep Learning
Machine Translated
Haciendo ejercicios sobre ejemplos reales usando Eras. Italia entendió totalmente nuestras expectativas sobre esta capacitación.
Paul Kassis
Curso: Advanced Deep Learning
Machine Translated
Realmente aprecié las respuestas claras y claras de Chris a nuestras preguntas.
Léo Dubus
Curso: Réseau de Neurones, les Fondamentaux en utilisant TensorFlow comme Exemple
Machine Translated
En general, disfruté el entrenador experto.
Sridhar Voorakkara
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Me sorprendió el estándar de esta clase, diría que era el estándar de la universidad.
David Relihan
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Muy buena visión general. Go fondo desde Tensorflow por qué funciona como lo hace.
Kieran Conboy
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Me gustaron las oportunidades de hacer preguntas y obtener explicaciones más profundas de la teoría.
Sharon Ruane
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Hemos obtenido mucha más información sobre el tema. Se hicieron algunas buenas discusiones con algunos temas reales dentro de nuestra compañía.
Sebastiaan Holman
Curso: Machine Learning and Deep Learning
Machine Translated
La capacitación proporcionó la base correcta que nos permite ampliar aún más, al mostrar cómo la teoría y la práctica van de la mano. De hecho, me interesó más en el tema que antes.
Jean-Paul van Tillo
Curso: Machine Learning and Deep Learning
Machine Translated
Realmente disfruté de la cobertura y la profundidad de los temas.
Anirban Basu
Curso: Machine Learning and Deep Learning
Machine Translated
El capacitador explicó muy fácilmente temas difíciles y avanzados.
Leszek K
Curso: Artificial Intelligence Overview
Machine Translated
Me gustaron las nuevas ideas en el aprendizaje automático profundo.
Josip Arneric
Curso: Neural Network in R
Machine Translated
Obtuvimos algunos conocimientos sobre NN en general, y lo que fue más interesante para mí fueron los nuevos tipos de NN que son populares hoy en día.
Tea Poklepovic
Curso: Neural Network in R
Machine Translated
Disfruté sobre todo los gráficos en R :))).
Faculty of Economics and Business Zagreb
Curso: Neural Network in R
Machine Translated
El profundo conocimiento del entrenador sobre el tema.
Sebastian Görg
Curso: Introduction to Deep Learning
Machine Translated
Enfoque muy actualizado o CPI (tensor flow, era, learn) para hacer aprendizaje automático.
Paul Lee
Curso: TensorFlow for Image Recognition
Machine Translated
Muy flexible.
Frank Ueltzhöffer
Curso: Artificial Neural Networks, Machine Learning and Deep Thinking
Machine Translated
En general, disfruté de la flexibilidad.
Werner Philipp
Curso: Artificial Neural Networks, Machine Learning and Deep Thinking
Machine Translated
Dada la perspectiva de la tecnología: qué tecnología / proceso podría ser más importante en el futuro; mira, para qué se puede usar la tecnología.
Commerzbank AG
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Me beneficié de la selección del tema. Estilo de entrenamiento Practica la orientación.
Commerzbank AG
Curso: Neural Networks Fundamentals using TensorFlow as Example
Machine Translated
Todos me gusta
蒙 李
Curso: Machine Learning Fundamentals with Python
Machine Translated
forma de conducir y ejemplo dado por el entrenador
ORANGE POLSKA S.A.
Curso: Machine Learning and Deep Learning
Machine Translated
Posibilidad de discutir los temas propuestos usted mismo
ORANGE POLSKA S.A.
Curso: Machine Learning and Deep Learning
Machine Translated
Comunicación con los conferenciantes
文欣 张
Curso: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
Me gusta
lisa xie
Curso: Artificial Neural Networks, Machine Learning, Deep Thinking
Machine Translated
Cobertura en profundidad de temas de aprendizaje automático, particularmente redes neuronales. Desmitificaron mucho el tema.
Sacha Nandlall
Curso: Python for Advanced Machine Learning
Machine Translated
Este es uno de los mejores cursos prácticos de programación de ejercicios que he tomado.
Laura Kahn
Curso: Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP
Machine Translated
Esta es una de las mejores capacitaciones en línea de calidad que he tomado en mi carrera de 13 años. ¡Mantener el buen trabajo!.
Curso: Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP
Machine Translated
una gran cantidad de ejercicios que puedo usar directamente en mi trabajo.
Alior Bank S.A.
Curso: Sieci Neuronowe w R
Machine Translated
Ejemplos de datos reales.
Alior Bank S.A.
Curso: Sieci Neuronowe w R
Machine Translated
neuralnet, pROC en un bucle.
Alior Bank S.A.
Curso: Sieci Neuronowe w R
Machine Translated
El estilo de entrenamiento de Richard lo mantuvo interesante, los ejemplos del mundo real utilizados ayudaron a llevar los conceptos a casa.
Jamie Martin-Royle - NBrown Group
Curso: From Data to Decision with Big Data and Predictive Analytics
Machine Translated
El contenido, ya que me pareció muy interesante y creo que me ayudaría en mi último año en la Universidad.
Krishan Mistry - NBrown Group
Curso: From Data to Decision with Big Data and Predictive Analytics
Machine Translated
Realmente me gustaron los ejercicios
L M ERICSSON LIMITED
Curso: Machine Learning
Machine Translated
los ejercicios de laboratorio
Marcell Lorant - L M ERICSSON LIMITED
Curso: Machine Learning
Machine Translated
Esta es una de las mejores capacitaciones en línea de calidad que he tomado en mi carrera de 13 años. ¡Mantener el buen trabajo!.
Curso: Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP
Machine Translated
Algunos de nuestros clientes
































.png)









.png)






_ireland.gif)
Artificial Intelligence Subcategorías
Programas de los cursos AI (Artificial Intelligence)
Audiencia
Este curso está dirigido a ingenieros y arquitectos que buscan utilizar OpenCV para proyectos de visión artificial.
This instructor-led, live training (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.
By the end of this training, participants will be able to:
- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar los componentes de OpenFace para crear y desplegar una aplicación de reconocimiento facial de muestra.
Al final de esta capacitación, los participantes podrán:
Trabaje con los componentes de OpenFace, incluidos dlib, OpenVC, Torch y nn4 para implementar la detección de rostros, la alineación y la transformación.
Aplique OpenFace a aplicaciones del mundo real tales como vigilancia, verificación de identidad, realidad virtual, juegos e identificación de clientes habituales, etc.
Audiencia
- Desarrolladores
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
En esta capacitación, los participantes aprenderán cómo configurar y utilizar OpenNMT para llevar a cabo la traducción de varios conjuntos de datos de muestra. El curso comienza con una visión general de las redes neuronales que se aplican a la traducción automática. Los participantes realizarán ejercicios en vivo para demostrar su comprensión de los conceptos aprendidos y obtener retroalimentación del instructor. Al final de este entrenamiento, los participantes tendrán los conocimientos y la práctica necesarios para implementar una solución OpenNMT en vivo.
Las muestras de idioma fuente y de destino pueden pre-arreglarse según los requisitos del cliente.
Audiencia
Ingenieros de traducción y localización
Formato del curso
Parte conferencia, discusión de parte, práctica práctica pesada
En este curso repasaremos los principios de las redes neuronales y utilizaremos OpenNN para implementar una aplicación de muestra.
Audiencia
Desarrolladores de software y programadores que deseen crear aplicaciones de Deep Learning.
Formato del curso
Conferencia y discusión junto con ejercicios prácticos.
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar PaddlePaddle para permitir el aprendizaje profundo en sus aplicaciones de productos y servicios.
Al final de esta capacitación, los participantes podrán:
- Configurar y configurar PaddlePaddle
- Configure una red neuronal convolucional (CNN) para el reconocimiento de imágenes y la detección de objetos
- Configurar una Red Neuronal Recurrente (RNN) para el análisis de sentimientos
- Establecer un aprendizaje profundo sobre los sistemas de recomendación para ayudar a los usuarios a encontrar respuestas
- Predecir porcentajes de clics (CTR), clasificar conjuntos de imágenes a gran escala, realizar reconocimiento óptico de caracteres (OCR), buscar rangos, detectar virus informáticos e implementar un sistema de recomendaciones.
Audiencia
- Desarrolladores
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
Audiencia
- Ingenieros y desarrolladores que buscan desarrollar aplicaciones de visión artificial
- Ingenieros de fabricación, técnicos y gerentes
Formato del curso
- Este curso presenta los enfoques, las tecnologías y los algoritmos utilizados en el campo de la coincidencia de patrones tal como se aplica a la Visión artificial.
Audiencia
Este curso está dirigido a desarrolladores y científicos de datos que quieren crear motores predictivos para cualquier tarea de aprendizaje automático.
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use Pandas to preform predictive analysis with machine learning.
By the end of this training, participants will be able to:
- Perform data wrangling in Python.
- Conduct ETL operations for machine learning.
- Create data visualizations with Pandas
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Al final de esta capacitación, los participantes podrán:
- Implementar algoritmos y técnicas de aprendizaje automático para resolver problemas complejos
- Aplicar el aprendizaje profundo y el aprendizaje semi-supervisado a aplicaciones que involucren imagen, música, texto e información financiera
- Empujar los algoritmos de Python a su máximo potencial
- Usa bibliotecas y paquetes como NumPy y Theano
Audiencia
- Desarrolladores
- Analistas
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán los conceptos básicos de Computer Vision mientras avanzan en la creación del conjunto de aplicaciones simples de Computer Vision utilizando Python.
Al final de esta capacitación, los participantes podrán:
- Comprenda los conceptos básicos de Computer Vision
- Use Python para implementar tareas de Visión por computadora
- Construye sus propios sistemas de detección de rostro, objeto y movimiento
Audiencia
- Programadores de Python interesados en Computer Vision
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
Al final de esta capacitación, los participantes podrán:
- Resuelva problemas de ciencias de datos basados en texto con código reutilizable de alta calidad
- Aplicar diferentes aspectos de scikit-learn (clasificación, clustering, regresión, reducción de dimensionalidad) para resolver problemas
- Cree modelos efectivos de aprendizaje automático utilizando datos basados en texto
- Crear un conjunto de datos y extraer características del texto no estructurado
- Visualice los datos con Matplotlib
- Construya y evalúe modelos para obtener información
- Solucionar problemas de errores de codificación de texto
Audiencia
- Desarrolladores
- Científicos de datos
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
Este curso se centra en la extracción de información y significado de estos datos. Utilizando las bibliotecas de lenguaje y procesamiento de lenguaje natural (NLP), combinamos conceptos y técnicas de la informática, la inteligencia artificial y la lingüística computacional para entender algorítmicamente el significado detrás de los datos de texto. Las muestras de datos están disponibles en varios idiomas según los requisitos del cliente.
Al final de este entrenamiento los participantes serán capaces de preparar conjuntos de datos (grandes y pequeños) de fuentes dispares, a continuación, aplicar los algoritmos adecuados para analizar e informar sobre su significado.
Audiencia
Lingüistas y programadores
Formato del curso
Parte conferencia, discusión de la parte, práctica práctica pesada, pruebas ocasionales para calibrar la comprensión
En esta capacitación en vivo dirigida por instructores, los participantes aprenderán a aplicar técnicas y herramientas de aprendizaje automático para resolver problemas del mundo real en la industria financiera. R se utilizará como lenguaje de programación.
Los participantes primero aprenden los principios clave, luego ponen en práctica sus conocimientos construyendo sus propios modelos de aprendizaje automático y utilizándolos para completar una serie de proyectos de equipo.
Al final de esta formación, los participantes podrán:
- Comprender los conceptos fundamentales del aprendizaje automático
- Conozca las aplicaciones y usos del aprendizaje automático en las finanzas
- Desarrolle su propia estrategia de trading algorítmico utilizando el aprendizaje automático con R
Audiencia
- Desarrolladores
- Científicos de datos
Formato del curso
- Conferencia parcial, discusión parcial, ejercicios y práctica prácticas pesadas
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go beyond building ML models and optimize the ML model creation, tracking, and deployment process.
By the end of this training, participants will be able to:
- Install and configure MLflow and related ML libraries and frameworks.
- Appreciate the importance of trackability, reproducability and deployability of an ML model
- Deploy ML models to different public clouds, platforms, or on-premise servers.
- Scale the ML deployment process to accommodate multiple users collaborating on a project.
- Set up a central registry to experiment with, reproduce, and deploy ML models.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Nuestro objetivo es darle las habilidades para entender y usar las herramientas más fundamentales de la caja de herramientas de Aprendizaje de Máquinas con confianza y evitar las trampas comunes de las aplicaciones de Data Sciences.
Nuestro objetivo es darle las habilidades para entender y usar las herramientas más fundamentales de la caja de herramientas de Aprendizaje de Máquinas con confianza y evitar las trampas comunes de las aplicaciones de Data Sciences.
Nuestro objetivo es darle las habilidades para entender y usar las herramientas más fundamentales de la caja de herramientas de Aprendizaje de Máquinas con confianza y evitar las trampas comunes de las aplicaciones de Data Sciences.
Científicos de datos y estadísticos que tienen cierta familiaridad con el aprendizaje de máquinas y saben cómo programar R. El énfasis de este curso está en los aspectos prácticos de la preparación de datos / modelos, la ejecución, el análisis post hoc y la visualización. El propósito es dar una introducción práctica al aprendizaje automático a los participantes interesados en aplicar los métodos en el trabajo
Se utilizan ejemplos específicos del sector para hacer que la formación sea relevante para el público.
Al final de esta capacitación, los participantes podrán:
- Cree una aplicación móvil capaz de procesar imágenes, análisis de texto y reconocimiento de voz
- Acceda a modelos de ML pre-entrenados para la integración en aplicaciones de iOS
- Crea un modelo ML personalizado
- Agregue soporte de Siri Voice a las aplicaciones de iOS
- Comprender y usar frameworks como coreML, Vision, CoreGraphics y GamePlayKit
- Utilice idiomas y herramientas como Python, Keras, Caffee, Tensorflow, sci-kit learn, libsvm, Anaconda y Spyder
Audiencia
- Desarrolladores
Formato del curso
- Conferencia de parte, discusión en parte, ejercicios y práctica práctica
This instructor-led, live training (online or onsite) is aimed at engineers who wish to evaluate the approaches and tools available today to make an intelligent decision on the path forward in adopting MLOps within their organization.
By the end of this training, participants will be able to:
- Install and configure various MLOps frameworks and tools.
- Assemble the right kind of team with the right skills for constructing and supporting an MLOps system.
- Prepare, validate and version data for use by ML models.
- Understand the components of an ML Pipeline and the tools needed to build one.
- Experiment with different machine learning frameworks and servers for deploying to production.
- Operationalize the entire Machine Learning process so that it's reproduceable and maintainable.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.